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The nonlinear development of stationary Gortler vortices leads to a highly distorted 
mean flow field where the streamwise velocity depends strongly not only on the wall- 
normal but also on the spanwise coordinates. In this paper, the inviscid instability of 
this flow field is analysed by solving the two-dimensional eigenvalue problem 
associated with the governing partial differential equation. It is found that the flow field 
is subject to the fundamental odd and even (with respect to the Gortler vortex) unstable 
modes. The odd mode, which was also found by Hall & Horseman (1991), is initially 
more unstable. However, there exists an even mode which has higher growth rate 
further downstream. It is shown that the relative significance of these two modes 
depends upon the Gortler vortex wavelength such that the even mode is stronger for 
large wavelengths while the odd mode is stronger for short wavelengths. Our analysis 
also shows the existence of new subharmonic (both odd and even) modes of secondary 
instability. The nonlinear development of the fundamental secondary instability modes 
is studied by solving the (viscous) partial differential equations under a parabolizing 
approximation. The odd mode leads to the well-known sinuous mode of break down 
while the even mode leads to the horseshoe-type vortex structure. This helps explain 
experimental observations that Gortler vortices break down sometimes by sinuous 
motion and sometimes by developing a horseshoe vortex structure. The details of these 
break down mechanisms are presented. 

1. Introduction 
Two-dimensional boundary-layer flow over a concavely curved wall is subject to 

Gortler instability due to the action of centrifugal force and results in the formation of 
counter-rotating streamwise vortices. Gortler vortices play a dominant role in 
boundary-layer transition in many aerodynamic flows such as on turbine blades and 
supersonic nozzle walls (e.g. Beckwith et af. 1984). Owing to their technological 
importance, Gortler vortices have been the subject of a number of investigations (for 
recent reviews, see Hall 1990; Floryan 1991; Saric 1994). Gortler vortices are steady 
and the question of how they might break down to turbulent motion is a problem of 
fundamental interest in fluid mechanics. In this work, we will study the linear 
secondary instability characteristics of Gortler vortices and the nonlinear growth of 
two important modes of secondary instability up to the break down stage. 

Experimental investigations have revealed two distinct types of secondary 
instabilities when the primary instability (the Gortler vortex) is sufficiently developed. 
Bippes (1978) made detailed observations of Gortler vortex break down using the 
hydrogen-bubble visualization technique in the Gortler number (GJ range of 
approximately 3 to 9 (based upon momentum thickness 0) where Go is defined as 

G, = Ro(Ol~tl)''2, (1.1) 
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being the surface curvature and Re the Reynolds number based upon momentum 
thickness. Bippes found that the initial amplification of the Gortler vortices agreed 
with linear theory and, later, sinuous oscillations developed, which ultimately led to 
turbulence. Aihara & Koyama (1981) conducted flow visualization studies as well as 
hot-wire measurements of Gortler vortices in the Go range between 7.7 and 15. They 
found that a different type of secondary instability, i.e. the horseshoe vortex type (also 
called the varicose instability), was responsible for transition. Ito (1985) also found this 
symmetric mode of break down in his experiment conducted for Go between 5.5 and 
12.4. Swearingen & Blackwelder (1987, referred to as SB hereafter) studied Gortler 
vortices using smoke-wire and hot-wire techniques for Ge between 0.5 and 10. They 
observed that both the sinuous and the horseshoe types of secondary instabilities were 
present in the transition process and found that the sinuous mode was the stronger of 
the two. In their experiment, the unsteady secondary instability fluctuations correlated 
better with the spanwise velocity gradients than with the normal velocity gradient. 
Unsteady motion in Gortler vortices was also observed by Peerhossaini & Wesfried 
(1988). 

Numerical simulations have been carried out by a number of researchers (e.g. Sabry 
& Liu 1991; Hall 1990; Lee & Liu 1992; Malik & Li 1993) for nonlinear Gortler 
vortices under the same conditions as the experiment of SB. Agreement with the 
experiment was obtained for the early stages of Gortler vortex development. More 
recently, Guo & Finlay (1994) studied spatially developing nonlinear Dean and Gortler 
vortices and explained the wavenumber selection mechanism and the irregularities 
associated with vortex structures found in the experiments. Unsteady oscillations in 
Gortler vortices have been studied by Hall & Horseman (1991) and Yu 8z Liu (1991, 
1994). Hall & Horseman (1991) derived a partial differential equation governing the 
inviscid secondary instability for a mean flow which varied strongly in two directions. 
They identified the two-dimensional odd and even eigenfunctions of this equation as 
respectively representing the sinuous and varicose types of secondary instability of the 
Gortler vortex. They also found that the odd mode grows faster than the even mode. 
The same conclusion was reached by Yu & Liu (1991, 1994) who performed viscous 
calculations. In the temporal simulation of Liu & Domaradzki (1993), the sinuous 
mode was also found to be stronger than the varicose mode. 

All these numerical investigations of secondary instability seem to point to one fact: 
the sinuous mode is the dominant mode and is chiefly responsible for the transition to 
turbulence. Why do then some experiments (e.g. Aihara & Koyama 1981) show the 
presence of only the varicose mode? Examining the above-cited numerical results 
closely, we find that most of these calculations were carried out for either a limited 
range of wavelengths or a limited number of streamwise locations. In Hall & Horseman 
(1991), for example, the secondary instability calculations were computed almost 
exclusively at x = 100 cm. In Liu & Domaradzki (1993), the computational box had 
streamwise dimension of either 2 or 2.2 cm, which essentially fixed the streamwise 
wavelength. 

In this paper, we perform a more comprehensive study and analyse various modes 
of secondary instability and the effect of Gortler vortex wavelength on the relative 
importance of odd and even modes. Previous studies have addressed only the 
fundamental mode (i.e. spanwise wavelength equal to the Gortler vortex wavelength) 
of instability. However, we will investigate both fundamental and subharmonic modes. 
We also study the nonlinear evolution of the secondary instability modes using 
parabolized stability equations (PSE) (see Herbert 1991 ; Bertolotti, Herbert & Spalart 
1992; Chang et al. 1991). Section 2 formulates the parabolized stability equation which 
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describes all stages of the vortex development. Section 3 deals with linear secondary 
instability while 94 addresses the nonlinear evolution of secondary instabilities. 
Conclusions are drawn in 95. 

2. Problem formulation for nonlinear steady and unsteady disturbances 
We consider a two-dimensional zero-pressure-gradient boundary-layer flow over a 

concave surface whose constant radius of curvature rt = 1 / ~ + .  The streamwise, wall- 
normal and spanwise coordinates are denoted as x = A‘/,,, y = Y/I, and z = Z/lo,  
respectively ( y  = 0 denotes the wall), where the lengthscale 1, will be prescribed later. 

Let the x- ,  y -  and z-components of the velocity and pressure be given by 

(ut, vti wt) = ue{u(x ,Y)+u(x ,y , z ,  t ) ,  V ( x , ~ ) + u ( x , y , z , t ) , O + w ( x , y , z ,  t ) ) ,  

Pt  = P w + P ( X ,  Y ,  z, t ) ) ,  

where the superscript t represents a dimensional quality and U, is the velocity scale. 
Here U and V are mean-flow velocity components obtained by solving the Blasius 
equation whereas u, v ,  w represent the perturbation velocity components in the x- ,  y - ,  
z-directions, respectively. Similarly, P and p represent the mean and perturbation 
pressures. We assume that Reynolds number, R, is large and that the radius of 
curvature is much larger than the boundary-layer thickness, 6 (i.e. kt6 < 1). In this case, 
if K = K ~ I , ,  the equations governing the perturbations quantities are 

(2.4) 

where N,, N2 and N3 represent the nonlinear terms 

and 

The boundary conditions are 
u = u = w = O  at y = O  and u+O, u+V,(x), w+O as y + m ,  

where V, signifies a non-zero value. Periodic boundary conditions are imposed in the 
spanwise direction. Here, I ,  and U, are constants so as to defined Reynolds number R 
as 

R = UeI, /v ,  



80 F. Li and M .  R.  Malik 

where the lengthscale 1, = ( v X , / U , ) ' / ~ ,  X, being the location (dimensional) of a 
reference streamwise station, and v the kinematic viscosity. Another important 
parameter which is a measure of the wall curvature is the Gortler number G defined as 
G = R ( K \ ~ ' ~ .  The reason why v does not go to zero outside the boundary layer is that 
the vertical velocity perturbation vanishes for all Fourier modes (see (2.5) below) 
except the mean-flow correction mode. 

We use the method of parabolized stability equations (PSE) for our computations. 
Here, we follow the formulation of Malik & Li (1992) (see also Malik, Li & Chang 
1994) and let Q = (u, v ,  w , p )  be the disturbance vector and assume that the disturbance 
takes the form 

4 = X B $ , , ( ~ , y ) e ~ p { i r  am,(nd[+in/3z-irnwt I , (2.5) 

where a,, and B are the x and z wavenumbers, w is the perturbation frequency and 4,, 
is the amplitude function for the mode (mu,@). Substituting (2.5) into (2.1)-(2.4), we 
obtain a set of equations with $,, and a,, as unknowns. Since, there are now more 
unknowns (namely, a,,) than equations, another condition is needed for the closure 
of the system. Since the basic flow is slowly varying in the streamwise direction, a 
condition on $mn is imposed such that most of the waviness and growth of the 
perturbation is absorbed into the exponential function in (2.5), making the amplitude 
function $,, slowly varying with respect to x. The terms containing a2$,,,,/ax2 can 
thus be dropped and the only second derivatives left in the governing equations are 
those with respect to y .  These new stability equations are parabolized in the sense of 
the parabolized Navier-Stokes (PNS) equation for mean-flow computations. The 
condition for choosing a,, and minimizing the streamwise variation of the amplitude 
function can take several forms. In the present work, we choose a,, to be such that 
the following integral vanishes : 

m n  2 0  

where * denotes the complex conjugate. The PSE can be written in matrix form as 

F($mn,  amn) = 0, (2.8) 
where the coefficient matrices contain the Blasius flow quantities as well as a,,, /3 and 
w. Equation (2.8) is a general form of (2.6). The matrix operators L,-L, and N,, are 
given in the Appendix. The boundary conditions are 

ti,, = ij,, = ~,, = 0 at y = 0, (2.9~) 
(2.9 b) 

No boundary condition is required for O(co) when m = n = 0. 
We discretize the PSE using discrete Fourier transforms in the spanwise direction 

and in time. In the direction normal to the wall, we use the fourth-order compact 
difference scheme (Malik, Chuang & Hussaini 1982) which requires that (2.7) be 
written as a system of first-order equations. Numerical computation starts at some 
streamwise location xo where the velocity components are prescribed for a given 

1 "  umn, v,, (except for m = n = 0),  gm, += 0 as y --z cc, 
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wavenumber a,, ; the velocities and pressure at xo + dx are calculated using backward 
Euler discretization. If (2.8) were not satisfied, a new a,, would be chosen and the 
equations solved again. This iterative process continues until (2.8) is satisfied, and the 
computation proceeds to the next streamwise location. During this iterative process, 
nonlinear terms are also updated and one makes sure that they are converged before 
the solution proceeds downstream. We note that the PSE approximation is only valid 
for convective instabilities. If the flow were to be subject to absolute instabilities 
(Huerre & Monkewitz 1990), the approximation would break down. 

3. Linear inviscid secondary instability 
3.1. Basic flow 

In order to obtain the three-dimensional basic flow for linear stability analysis, we first 
solve the steady form (w = 0) of the governing partial differential equations given in $2 
above. In the limit R --f 00, and K+ 0 with G held fixed, and by rescaling the dependent 
and independent variables (V  = O( 1/R) U, (v, w) = O( 1/R) u, ( y ,  z) = O( 1/R) x) the 
parabolic equations derived by Hall (1983,1988) can be recovered from (2.1H2.4). In 
Hall (1988) a further step is taken to eliminate the spanwise velocity and the pressure 
from the linear terms in (2.7), resulting in a coupled system of fourth-order and second- 
order equations. However, we will solve (2.7) directly in the primitive (a, 6, Gyp) 
formulation, except that the condition imposed on a, (2.8), is not applied since a is 
identically 0. 

The flow parameters used in the present analysis are taken from the experiment of 
SB. The radius of curvature of the concave surface is 320 cm and free-stream velocity 
is 500 cm s-l. The streamwise range of interest in our analysis lies approximately 10 .c 
X < 120 cm, in which the Reynolds number based on the distance from the leading 
edge (Re = R2) ranges from 3.3 x lo4 to 4 x lo5 and the Gortler number G, ranges from 
1.3 to 8.3. Calculations are started at X = 10 cm with initial amplitude u = 0.0187Ue 
estimated from the experimental data of SB for disturbances of wavelengths A, = 0.9, 
1.8 and 3.6 cm. The number of spanwise Fourier modes used in the z-direction is 11 (i.e. 
n goes from - 10 to 10 in (2.5)), and the streamwise marching step size is 0.821 58 cm. 
Therefore, approximately 130 marching steps are taken in the streamwise direction. 
The number of wall-normal steps is 121. The free-stream boundary conditions are 
imposed at a height of about 20 boundary-layer thicknesses. This is sufficient since the 
perturbations decay exponentially with y .  The solution was tested by changing the 
number of grid points and it was found to be grid-independent. 

The energy in each Fourier mode is shown in figures 1 (a) and 1 (b) for A, = 0.9, and 
3.6 cm, respectively. Here, energy is defined as 

and 

(3.1 a) 

(3.1 b) 

The omission of the velocity component normal to the wall 6,, from (3.1 b) is necessary 
because 6, does not vanish as y +  00. The integral in (3.1 b) would not exist if ij0 were 
included. 

Initially, the Gortler vortex (mode 1) develops approximately linearly, but later on 
it begins to saturate (compare with the linear result). Owing to nonlinearity, higher 
harmonics (modes 2,3, . . .) and a mean-flow correction mode (mode 0) are generated. 
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x (cm) 
FIGURE 1. Nonlinear evolution of disturbance energy for various spanwise Fourier 

modes: (a) A, = 0.9 cm, (b) A, = 3.6 cm. 

For the low-wavelength case (A, = 0.9 cm), mode 0 is dominant over mode 2 right from 
the beginning. At x z 72 cm, mode 0 overtakes even the fundamental mode (mode 1). 
Thus in this nonlinear regime, the basic interaction is between the fundamental and the 
mean-flow correction (mode 0). The dominance of the mean-flow correction mode in 
figure l(a) is consistent with the results obtained by Hall & Lakin (1988) using the 
small-wavelength asymptotic analysis. For the longer-wavelength case, the energy in 
modes 0 and 2 is comparable up to x z 80 cm and it is only after x = 100 cm that 
mode 0 overtakes mode 1. The results in figure 1 (b), therefore, suggest that for long- 
wavelength nonlinear Gortler vortices, both mode 0 and mode 2 are important in the 
nonlinear evolution. 

The experiment of SB (as well as others) produced ' mushroom-like' structures for 
the streamwise velocity due to the pumping action of the counter-rotating vortices. Our 
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FIGURE 2. Variation of streamwise velocity in the (Y ,  Z)-plane due to the presence of Gortler vortices 
at X = 100 cm: (a) A, = 0.9 cm, (b)  A, = 1.8 cm, (c) A, = 3.6 cm. Contours range from u/u, = 0.1 to 
0.9 in increments of 0.1. 

computed structures for A, = 1.8 cm are similar to those given by Lee & Liu (1992). In 
the early stages of the development, the amplitude of the u-perturbation is small and 
the velocity contours show a wavy spanwise structure. As the Gortler vortices gather 
strength at relatively large distances downstream the same 'mushroom' structures as 
observed in the experiment of SB are recovered. The regions in the neighbourhood of 
the centrelines of the mushrooms are referred to as 'peak' regions where the 
streamwise velocity is relatively low; and the regions between the mushrooms are 
referred to as 'valley' regions where the streamwise velocity is relatively high. These 
mushrooms at x = 100 cm are shown for A, = 0.9, 1.8 and 3.6 cm in figure 2. Clearly, 
the valley region becomes much wider as the wavelength increases. We will see later 
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that the relative significance of secondary instability modes depends upon Gortler 
vortex wavelengths. The streamwise velocity profiles in the peak plane become wake- 
like and it will be shown below that the high-shear-layer region up in the peak plane 
will become subject to a particular mode of secondary instability. Similarly, the 
spanwise distribution of the streamwise velocity component is also inflectional and 
becomes subject to another mode of secondary instability, as also found by Hall & 
Horseman (1991) and Yu & Liu (1991). 

We will use the steady Gortler vortex flow field generated above as the basic flow 
state for our secondary instability analysis given in the next subsection. Thus, if uG, uG, 
wG are the perturbation velocities due to the Gortler vortex, the new mean flow whose 
stability will be analysed in the next subsection is 

u+uG, p =  v + v G ,  w =  w+wG. 

3.2. Linear stability equations 
We assume that the streamwise variation of the new mean flow (a, V, W) is small 
compared with the wavelength of the secondary disturbance. This assumption can be 
justified a posteriori from the results. Therefore, the linear secondary oscillation can be 
written as 

y(x ,y ,  z, t )  = @(y ,  z) ei(az-wt), 
where y = (u8,u8, w8,p,)  and @ = (G8, 8,, G8,fi,); a is the wavenumber, w is the 
oscillation frequency, and the subscript s indicates secondary instability. Here, we 
consider only the temporal instability; therefore a is real and w is complex. The flow 
field is unstable to disturbances if wi > 0. 

We note that V( y, z) and W( y, z) are much smaller than i~( y, z). Then, following Hall 
& Horseman (1991), the equations governing the linear secondary instability are 

a8 a$, 
ay az 

iati,+-!+- = 0, 

afi, ia(a- c) 8, = --, 
aY 

afi, ia(c- c) G, = - - 
aZ 

(3.3) 

(3.5) 

(3.6) 

where c = o/a is the (complex) disturbance phase velocity. Eliminating li,, 8,, we 
obtain the equation governing the secondary pressure oscillation (after dropping 
subscript s) : 

The boundary conditions are 
Y = 0, &/(Y,Z) = 0; Y + W ,  B ( Y , Z ) + O ,  (3.8a, b) 

and 
m, z )  = A Y ,  z + u, (3.9a) 

where A, is the Gortler vortex wavelength. Equation (3.9a) yields the fundamental 
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FIGURE 3. Secondary instability temporal growth rate variation with spanwise wavenumber at various 
streamwise locations. (a) Odd mode, (b) even mode, the broken line shows the second even mode. 

mode of secondary instability. The subharmonic mode can be obtained by replacing 
(3.9 a) with 

A Y ,  z) = P(Y,  + 2A,). (3.9b) 

Equations (3.7)-(3.9) constitute an eigenvalue problem which is solved by using a 
Chebyshev collocation method in the y-direction and a Fourier collocation method in 
the z-direction with appropriate grid stretchings in both directions to concentrate more 
collocation points in regions of high gradients. Furthermore, since the basic flow state 
is symmetric, the eigenfunctions can be split into families of even and odd modes. For 
the even mode $( y, z) = $( y, - z) and for the odd mode B( y, z) = -$( y, - z). Taking 
advantage of the symmetry conditions, we reduce the size of the resulting discretized 
system by approximately half. The discretized system can be represented in the form 

Ap = wBp, (3.10) 
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FIGURE 4. Maximum spatial growth rate of the odd and even fundamental modes at various 

streamwise locations, compared with the growth rate of the Gortler vortex. 

Odd mode Even mode 

Wavelength Wavelength 
x(cm)  f ( H 4  (cm) x(cm)  f ( H 4  (cm> 

65.0 67.1 4.59 79.8 181.7 1.66 
70.0 87.8 3.57 82.3 194.8 1.56 
74.9 108.8 2.93 84.9 210.7 1.41 
82.3 141.2 2.38 89.7 243.2 1.34 
84.9 161.6 2.07 94.6 271.3 1.27 
89.7 202.1 1.70 - 

94.6 243.0 1.41 
- - 
- - - 

TABLE 1.  Frequency and wavelength of the fundamental secondary instability modes, A, = 1.8 cm 

where B is a diagonal matrix and A is a square matrix of size N,(N,/2+ l), where N ,  
and N, are the number of collocation points in the y- and z-directions, respectively. 
This eigenvalue problem is solved by the QR method which yields all the eigenvalues 
of the discretized system (3.10). Throughout the computations, we use N, = 85 and 
N, = 32. 

The above analysis ignores the effect of viscosity. Yu & Liu (1994), who performed 
a viscous analysis, noted that the inviscid analysis does not capture the correct 
eigenfunctions close to the wall. However, here we perform an inviscid analysis since 
the secondary instability is inflectional and, hence, inviscid in nature and, for the same 
resolution in the two-dimensional eigenvalue problem, inviscid analysis can be 
performed with an order-of-magnitude less computer time. Any viscous effects will be 
accounted for in the PSE analysis we perform in $4 below. 
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FIGURE 5. Streamwise velocity eigenfunctions (absolute value) of fundamental secondary instability 
at X = 95 cm: (a) most unstable odd mode, (6) most unstable even mode, (c)  second most unstable 
even mode. Dashed lines show the basic flow state. 
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3.3.  Results of secondary instability calculations 
Secondary instability calculations are carried out for Gortler vortices with wavelengths 
of 0.9, 1.8 and 3.6 cm. We first present results for the A, = 1.8 cm case for which two- 
dimensional eigenvalue computations are started at X = 65 cm, where the high- 
frequency oscillations are moderately unstable. Hence, we avoid the difficulty 
associated with the singularity due to neutral disturbances. The growth rate variation 
with the streamwise wavenumber at various streamwise locations between X = 65 and 
100 cm, normalized with scales at X = 10 cm, is shown in figure 3(a) for odd modes 
and figure 3(b)  for even modes. The general trend is that the secondary oscillations 
become more unstable as the Gortler vortices become stronger downstream. The 
maximum growth rate at each streamwise location occurs at streamwise wavenumbers 
approximately between 0.2 and 0.3, corresponding to wavelengths between 1.2 and 
1.7 cm. The Blasius boundary-layer thickness in the absence of the Gortler vortices in 
the range X = 65 and 100 cm is approximately between 0.7 and 0.9 cm. This shows that 
the wavelength of the secondary instabilities is of the order of the boundary-layer 
thickness. Therefore, our assumption that the basic flow state variation is negligible 
over the distance of one wavelength is, indeed, justified. We can visually extrapolate the 
growth rate curves and see that, in this streamwise range, the highest wavenumber 
where secondary instability occurs is approximately 0.5, corresponding to a wavelength 
of 0.69 cm. 

We now consider the variation of the maximum growth rate of the secondary 
instabilities with streamwise distance. In order to show that the secondary instability 
grows much faster than the Gortler vortex, we convert the temporal growth rate to the 
spatial one by using a group velocity transformation. The use of group velocity to 
transform temporal growth to spatial growth is well known for primary instabilities 
(Gaster 1962; Nayfeh & Padhye 1979). Its use for the secondary instability has been 
addressed by Herbert, Bertolotti & Santos (1985). The value of the group velocity 
aq./aa varies with x and lies in the range 0.6 to 0.72. Figure 4 shows the spatial growth 
rate of the most unstable even and odd modes for A, = 0.9, 1.8 and 3.6 cm along with 
the growth rate of the nonlinearly developing Gortler vortex. Since, in the short-wave 
case (A,  = 0.9 cm), the Gortler vortex grows fastest, the odd-mode secondary instability 
begins to appear at about X = 50 cm where the amplitude of the Gortler vortex is 
about 20%. The even mode becomes unstable further downstream. The odd mode 
dominates over most of the range X = 50 to 100 cm, with the even mode catching up 
at around X = 100 cm. Growth rates of the odd and even modes reach peak values at 
approximately X = 70 and 90 cm, respectively. For the Gortler vortex of medium 
wavelength (A,  = 1.8 cm), the odd mode begins to become significant from approxi- 
mately X = 65 cm and the even mode roughly from X = 75 cm, with peak growth 
rates occurring at X = 75 and 95 cm, respectively. An important feature we discover is 
that, although the odd mode is the first to become unstable, the even mode takes over 
at roughly X = 82 cm to become the most unstable mode. In the long-wave case, the 
odd mode initially grows faster than the even mode. However, before the odd-mode 
growth rate becomes significantly large, the even mode begins to dominate. At X =  
100 cm, the growth rates of both modes have yet to show signs of reaching peak values. 
The growth rate of the even mode at X = 100 cm is higher than the peak values for the 
short and medium waves. 

We note that the initial dominance of the odd mode over the even mode for the 
long-wavelength case is weak. Thus, if viscosity had a stabilizing influence on both 
modes then it is likely that in a viscous calculation, the even mode will become unstable 
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first. In any case, from the above calculations it is clear that there is a direct influence 
of the Gortler vortex wavelength on the relative significance of the odd and even 
modes. For low-wavelength Gortler vortices, the odd mode is strong. The converse 
appears to be true for the large-wavelength case. For intermediate wavelengths, both 
modes would have equivalent relevance. In the experiment of SB, the wavelength is 
around 1.8 cm and both sinuous and varicose modes were observed. There is some 
experimental evidence that Gortler vortex wavelengths have a direct influence on the 
type of secondary instability mode. In a related problem (Coriolis-force-induced 
instability due to rotation) Masuda, Hori & Matubara (1994) found that a horseshoe- 
type secondary mode appeared for a long-wavelength primary disturbance whereas 
sinuous secondary motion resulted for short wavelengths of the primary disturbance. 
Another factor which may have some bearing on the secondary instability mechanism 
is the Gortler number distribution, which is different in different experiments. 
However, its influence is believed to be an indirect one through its effect on the 
development of Gortler vortices and their wavelengths relative to the boundary-layer 
thickness. 

The frequency and wavenumber of the secondary instability corresponding to the 
maximum growth rate at various streamwise locations are given in table 1 for A, = 
1.8 cm. We see that the frequencies vary greatly from one streamwise station to the 
next. The experimentally observed frequency of 130 Hz may not be that of the most 
unstable wave at large downstream distances. The relatively lower-frequency waves 
(around 100 Hz) become unstable first. When the region of higher-frequency waves is 
reached, the laminar basic flow state may have already been destroyed by the nonlinear 
growth of secondary instabilities and the higher-frequency waves may not have a 
chance to manifest themselves. The temporal direct numerical simulation of Liu & 
Domaradzki (1 993) has a computational box which restricts the maximum wavelength 
to 2.0 cm. According to table 1, the frequency of most amplified disturbance is about 
160 Hz (their calculation gives about 200 Hz). The calculations of Hall & Horseman 
(1991) were almost exclusively for the basic flow state at X = 100 cm. They found that 
the fastest growing wave (odd mode) has a frequency of about 110Hz and a 
wavelength of about 3 cm. This would compare well with our results at about X = 
75 cm. This can be explained by noting the fact that the amplitude of their disturbed 
flow state is apparently lower than ours at corresponding streamwise locations: at 
X = 100 cm, our calculation in figure 2 shows a thin neck while their ~ ( y ,  z )  plot does 
not show this and resembles more the structure computed by us at X z 80. 

We now consider the eigenfunctions of these secondary instability modes at X =  
95 cm. The wavelength chosen here is 1.53 cm, close to the fastest growing odd and 
even modes at this downstream location. In addition to the most unstable odd and even 
modes, a second even mode is considered. The contours of velocity eigenfunction I6,J 
at X =  95 an are shown as solid lines in figure 5,  together with basic flow state 
q y ,  z )  as dashed lines in the background. The eigenfunctions are normalized so that the 
maximum IZiJ has an amplitude of unity. The contours plotted are from 0.1 to 0.9 in 
intervals of 0.1, and a(y, z) contours plotted are from 0.1 to 0.9 in intervals of 0.1 U,. 
One feature to notice is that the phase speeds, c,, of the modes shown in figure 5 are 
all close to 0.7Ue, and the amplitudes of these modes are concentrated in the 
neighbourhood of the manifold a ( y , z )  = O.7Ue. This manifold would be the critical 
layer in the case of neutral stability. 

The contours shown in figure 5 (a) bear some similarity to those obtained by Hall & 
Horseman (1991) despite the difference between the basic flow states in their work and 
the present work. The odd mode has two dominant peaks, one on each side of the peak 
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plane. In the case of the even modes, the second even mode (figure 5c)  has three 
dominant peaks similar to that shown in figure 6(a) of Hall & Horseman (1991) for the 
only even mode they analysed in their work. The most unstable single-peak even mode 
was not mentioned in Hall & Horseman (1991). Considering the fact that the growth 
rate of the first odd mode is about 1.8 times that of the second even mode (see figures 
3a and 3b) and that, in the work of Hall & Horseman (1991), the odd mode grows 
almost twice as fast as the even mode, we are led to believe that the three-peak even 
mode analysed by Hall & Horseman (1991) was actually the second unstable even 
mode, and the first unstable even mode was missed because they used a shooting 
technique to compute the eigenvalues. In our study, we use a global method which finds 
all the eigenvalues of the discretized problem. 

From the eigenfunctions, we see a definite relationship between instability and 
inflection in the velocity profiles. The inflection in the velocity profiles occurs at points 
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where the velocity gradient is maximum. Comparisons with vertical (uV) and horizontal 
(is,) velocity gradients (not shown) show that the amplitudes of the eigenfunctions 
concentrate near the regions of maximum velocity gradient. Furthermore, the most 
unstable even mode appears to be associated with the vertical velocity gradient, the 
most unstable odd mode with the horizontal velocity gradient and the second most 
unstable even mode with both gradients. 

Finally, we touch upon the subject of subharmonic instability. The sinuous and 
varicose modes we have discussed so far and those studied by Hall & Horseman (1991) 
and Yu & Liu (1991, 1994) have spanwise wavelengths equal to those of the primary 
Gortler vortices. They are the fundamental modes. Each mushroom structure formed 
by a pair of counter-rotating Gortler vortices, when subject to these disturbances, 
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Streamwise 
Frequency wavelength Growth rate 
(Hz) (cm) (s-l) 

Fundamental (s) 253 1.41 187 
Subharmonic (s) 233 1.63 107 
Fundamental (v) 215 1.27 152 
Subharmonic (v) 303 1.13 152 

TABLE 2. Comparison of most unstable fundamental and subharmonic modes at X = 85 cm, 
,Iz = 0.9 cm (s = sinuous, v = varicose) 

moves synchronously with adjacent mushrooms. It is also possible for a pair of 
adjacent mushrooms to swing in opposite directions. In fact, a close examination of the 
results of SB shows such oscillations (e.g. see the middle two streaks in figure 14c of 
SB). It is clear that these oscillations cannot originate from fundamental secondary 
instability modes, but can be attributed to the subharmonic instability modes having 
spanwise wavelengths equal to twice those of the primary Gortler vortices. For Gortler 
vortices with large wavelengths, the mushrooms are separated by wide valley regions 
as indicated by the nonlinear development of Gortler vortices of wavelengths 3.6 cm 
(figure 2). In this case the mushroom may tend to swing on its own without much 
interaction with its neighbours. On the other hand, for small wavelengths, the presence 
of the adjacent mushrooms is noticed. Therefore, the subharmonic mode of secondary 
instability may be pronounced for the low-wavelength case and, therefore, we choose 
At = 0.9 cm to do the subharmonic analysis. 
In the framework of the present two-dimensional eigenvalue problem, we include 

two periods of Gortler vortices in the basic flow P to use in (3.3H3.6). Computations 
are carried out at X = 85 cm. It is found that both fundamental sinuous and varicose 
modes have their respective subharmonic counterparts. The eigenfunctions (magnitude 
and phase) of the subharmonic modes are given in figure 6. These look very similar to 
those of the fundamental modes, except that each subharmonic mode goes through a 
phase change of 180" from one mushroom to the next. Hence, owing to the 
subharmonic instability, there are regions where the two mushrooms are attracted to 
each other while in other regions they move apart. Table 2 lists the frequency, 
wavelength and growth rate of the most unstable subharmonic modes at X = 85 cm 
together with their fundamental counterparts. It can be seen that, in this case, the 
subharmonic modes are significant. The growth rate of the subharmonic sinuous mode 
is over half that of the fundamental sinuous mode. The subharmonic varicose mode 
grows as fast as the fundamental varicose mode. These results imply that the 
subharmonic modes are as likely to appear as the fundamental modes. The sinuous 
subharmonic mode gives rise to anti-phase swings of the mushroom structures, leading 
to the swallowing of one mushroom by another. In the subharmonic varicose mode, the 
horseshoe vortex structures are simply shifted in the streamwise direction with respect 
to the adjacent mushrooms. 

4. Nonlinear development of unsteady disturbances 
We now solve (2.7H2.8) to study nonlinear evolution of the steady and unsteady 

disturbances. Calculations are performed for fundamental mode only and for A, = 
1.8 cm. The spatial secondary instability computations for the even and odd modes are 
started at streamwise locations where the respective modes are moderately unstable. 
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Since exact initial conditions are difficult to obtain, we use the eigenfunctions obtained 
from inviscid linear secondary instability analysis to approximate these conditions. 
Calculations show that transients decay very fast. The initial amplitude assigned to 
these disturbances is small enough (of O(lOP5) in ti, for both odd and even modes) to 
ensure that the initial evolution of the secondary instability is linear. 

We first plot the instantaneous streamwise velocity contours in the (x, z)-plane at 
Y = 1.08 cm (figure 7). We see that the odd mode perturbs the Gortler vortices in a wavy 
(or sinuous) manner, while the even mode breaks up the otherwise straight contours 
of Gortler vortices into series of knotty structures associated with the horseshoe vortex 
mode of break down. At large downstream distances, more and more small-scale 
structures begin to appear, as the flow heads for transition to turbulence. The structure 
of the subharmonic odd mode would bring the two mushrooms closer in some regions 
and further apart in others. As noted above, the structure of the subharmonic even 
mode will be similar to that shown in figure 7 for the fundamental mode except that 
the adjacent knots will be approximately 180" out of phase. 

Now we discuss the detailed results for the odd mode. These calculations are 
performed in the following way. We start the calculations at X = 10 cm for the steady 
disturbances only. These calculations are carried out up to X = 75 cm where the 
unsteady odd-mode disturbances are introduced. The frequency of the fundamental 
secondary instability is chosen to be 110 Hz, very close to the most unstable odd mode 
at that location (109 Hz). The number of Fourier modes is 1 1 in the spanwise direction 
(- 10 < n < 10) and 8 in time (- 7 < rn < 7). Figure 8 shows contours of streamwise 
r.m.s. fluctuations at four streamwise locations downstream of the starting location. 
Initially, the shape of the amplitude distribution closely resembles the local 
eigenfunctions analysed in the last section, except for some differences near the wall 
(e.g. compare figures 5a and 86). These differences may be attributed to viscous effects. 
Later on, at larger X, nonlinearity causes the amplitude distribution to become fatter, 
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beginning to fill up the (Y ,  2)-plane. The maximum amplitude reaches about 20 % of 
the free-stream velocity U,. There are two regions of high amplitude: one near the wall 
and the other away from the wall. Initially the region near the boundary-layer edge has 
higher amplitude, but as the disturbances evolve downstream the near-wall region 
attains higher amplitude. The contours of ti,,, for the odd mode are similar to the 
streamwise r.m.s. fluctuations shown in figure 15 of the temporal simulation of Liu & 
Domaradzlu (1 993), suggesting that this mode indeed plays an important role in the 
break-up of Gortler vortices. 

The contours of streamwise mean flow (time-averaged flow) at X =  102.3 cm are 
shown in figure 9. The changes in the mushroom structure from that without the high- 
frequency oscillations are profound (compare with figure 2b). The top of the 
mushroom becomes flatter because strong unsteady oscillations smear out the 
differences in velocity gradients. As the oscillations get stronger, the thin neck region 
of the mushroom, where low-speed fluid lifts up, becomes confined to the 
neighbourhood close to the wall. The experiments of SB show similar structure of the 
vortices prior to break down, except that in their experiment vortices tend to lose 
symmetry about the peak plane. Some of our calculations suggest that such loss of 
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FIGURE 9. Variation of time-averaged streamwise velocity in the (Y ,  Z)-plane at X = 102.3 cm; 
fundamental odd mode. Contour values range from 0.1 in increments of 0.1. 

symmetry is linked to the unsymmetric initial disturbance field. We also note that the 
computed isocontours of streamwise velocity for the odd mode at X = 102.3 cm shown 
in figure 9 agree much better with results of SB at 110 cm than at 100 cm. 

We now present computations for the even mode, which is introduced at the 
streamwise location X = 82 cm. The frequency of the fundamental secondary 
instability is taken to be 195 Hz, which is the frequency of the most unstable even mode 
at that location. The number of Fourier modes is the same as in the odd-mode case. 
The r.m.s. values of streamwise fluctuations are shown in figure 10. In the early linear 
stage, the distribution of amplitude of the streamwise r.m.s. fluctuation is concentrated 
in the region away from the wall, as in the results shown in figure 5(b). Nonlinear 
interaction increases the perturbation level near the wall. 

In their numerical simulation, Liu & Domaradski (1993) observed that the 
oscillation frequency of the vertical velocity is twice that of the spanwise velocity in the 
low-speed region, while the two frequencies are the same away from that region. This 
is also found to be the case in the present computations for the odd mode. Figure 11 
shows the vertical and spanwise velocity fluctuations at two fixed locations in space, 
one in the low-speed region, the other away from it. Counting the number of dominant 
peaks, we can observe the difference in frequency in the low-speed region. This 
phenomenon can be explained by considering the spatial-symmetry-preservation 
property of the fundamental secondary instability and its harmonics. Initially, the only 
mode present is the fundamental with frequency, say, J In the odd-mode case, the 
vertical velocity fluctuation for the fundamental mode is odd with respect to the line 
of symmetry of the background mushroom structure, while the spanwise velocity 
fluctuation is even. It can be mathematically verified that the symmetry properties of 
the harmonics obey the following rule: for the vertical velocity, modes with frequencies 
2f, 45, 65, etc. are even, while modes with frequencies 3f, 5f ,  7f, etc. are odd; for the 
spanwise velocity, modes with frequencies 25, 4S, 65, etc. are odd, while modes with 
frequencies 35, 55, 7f, etc. are even. These symmetry properties are preserved as the flow 
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develops downstream. Suppose we place a velocity probe somewhere along the line of 
symmetry of the background mushroom structure; we cannot detect the amplitude of 
the fundamental mode of the vertical velocity since it is odd and, therefore, has 
zero-amplitude there. The lowest-frequency mode that can be detected is the 2fmode 
of the vertical velocity. The lowest-frequency mode of the spanwise velocity that can 
be detected is the fundamental mode. Hence, it appears that, in the peak region, the 
frequency of the vertical velocity is twice that of the spanwise velocity. Once we move 
away from the peak region, the fundamental modes of both the vertical and the 
spanwise velocities can be detected ; therefore, the same frequencies are observed. 

5. Conclusions 
Linear secondary instability analysis for Gortler vortices is carried out using a 

two-dimensional eigenvalue approach. For the conditions of the experiment of SB 
(A, = 1.8 cm), the odd mode of secondary instability begins to appear at approximately 
X = 60 cm, the even mode becomes unstable later at approximately 70 < X < 75 cm. 
At about X = 82 cm, the even mode becomes more unstable than the odd mode. 
Comparisons of the amplitude distributions of eigenfunctions with the distributions of 
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vertical and spanwise shear gradients indicates the close association of the most 
unstable even mode with the vertical shear and the most unstable odd mode with the 
spanwise shear. 

It is shown that the relative significance of the odd and even modes depends upon 
the Gortler vortex wavelength. Thus the short-wavelength vortices show a stronger 
tendency towards the odd modes and the long-wavelength vortices towards the even 
modes. This result is supported by experiments. 

The above work as well as previous investigations (Hall & Horseman 1991 ; Yu & 
Liu 1991, 1994) have addressed fundamental modes of secondary instability. In this 
paper, we also investigate subharmonic instability by extending the spanwise 
computational domain to twice the wavelength of the Gortler vortex. We find that both 
the even and odd modes have corresponding subharmonics with growth rates 
comparable to those for the fundamental modes. It is likely that subharmonic modes 
are more relevant for short-wavelength Gortler vortices. 

The nonlinear spatial development of the odd and even modes of secondary 
instability is computed using the PSE method. The odd and even modes give rise to the 
sinuous instability and the varicose instability, respectively. Prior to break down to 
turbulence, the nonlinear interaction among the steady and unsteady modes eventually 
makes the Gortler vortices oscillate sinuously in the plane parallel to the plate or causes 
them to develop horseshoe-type structures which travel downstream. Both modes of 
break down have been found in the experiment. The two-fold difference between the 
frequency of the vertical velocity and that of the spanwise velocity oscillations found 
by Liu & Domaradzki (1993) is simply due to the fundamental mode of the vertical 
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velocity having zero amplitude at the line of symmetry of the mushroom for the 
sinuous instability, and the high frequency in the vertical velocity that they detected 
was, in fact, for the harmonic. 
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N,, is the Fourier transform of (N, ,N2,N, ,0)T in (2.1H2.4). 
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